Results on Total Domination and Total Restrained Domination in Grid Graphs

نویسندگان

  • Nasrin Soltankhah
  • N. Soltankhah
چکیده

A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. A set S of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex v ∈ V is adjacent to an element of S and every vertex of V − S is adjacent to a vertex in V − S. The total domination number of a graph G denoted by γt(G) is the minimum cardinality of a total dominating set in G. Respectively the total restrained domination number of a graph G denoted by γtr(G) is the minimum cardinality of a total restrained dominating set in G. Here we investigate the problem of total domination numbers and total restrained domination numbers of some grid graphs (cartesian products of two paths Pn and Pm). And we determine the total domination numbers of Pn,n, P2n,2n+2, P2n,4n−1, and P2n,m for each n and m ≡ 2n (mod 2n + 1). Also we determine the total domination numbers of P8,n. We then show that for these grid graphs the total restrained domination number is equal to the total domination number. Mathematics Subject Classification: 05C69

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

On Roman, Global and Restrained Domination in Graphs

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

متن کامل

On the total restrained domination edge critical graphs

Let G = (V, E) be a graph. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V −D has a neighbor in V −D. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for...

متن کامل

Characterization of total restrained domination edge critical unicyclic graphs

A graph with no isolated vertices is edge critical with respect to total restrained domination if for any non-edge e of G, the total restrained domination number of G+ e is less than the total restrained domination number of G. We call these graphs γtr-edge critical. In this paper, we characterize all γtr-edge critical unicyclic graphs.

متن کامل

Results on Total Restrained Domination in Graphs

Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009